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1. INTRODUCTION
Long confined to 15-day forecasts based on analogue techniques, and to monthly and
seasonal forecasts based on subjective techniques, long-range forecasts at the Canadian
Meteorological Centre (CMC) have evolved dramatically over the last two years. Since
June 1995, monthly forecasts have been based entirely on numerical techniques, and the
seasonal forecasts began using this method in September of the same year. In December
1996, seasonal forecasts were extended to lead-times of 3, 6 and 9 months.

This document discusses the nature of the problem of long-range forecasts (section 2),
validation of the operational procedure (section 3) and verifications (section 4). Section 5
draws the necessary conclusions and discusses the future of this endeavour.



2. NATURE OF THE PROBLEM
2.1 Time averaging
Time average forms the basis of long-range forecasts based on dynamical techniques.
Consider the example of the time series illustrated in Figure 1. Two series are shown: the
solid line indicates the height analysed at 500 hPa over Dorval (YUL) from day 1 to day
90 of the year 1993: the dashed line shows the height forecast coming from a general
circulation model for the same period. Note in this figure that both curves superposes
quite well during the first week of the series. However, beyond this period, the troughs
and ridges are not only out of phase, but their amplitudes also differ considerably. This is a
well known behaviour of models: their predictability period is about 10 days and their
variance is less than that observed in nature. The fact that the results shown come from a
general circulation model rather than a forecast model has absolutely no effect on the
conclusions. Using a higher resolution model would only increase the forecast period
slightly, but the rest of the integration would remain the same. Such results can easily lead
one to believe that seasonal forecasts are simply impossible.

Let us go back to Figure 1, and rather than examining the behaviour of the geopotential
height from day to day, let us take the mean for the whole period. For the analysis, we
obtain a value of 531 decametres with a standard deviation of 18 decametres. For the
forecast, we obtain 532 decametres with a standard deviation of 12 decametres. All of the
long-range forecasting technique is based on this conclusion: it is impossible to forecast
the weather on the 47th day of a seasonal forecast, for example, but the mean can
however be predicted. Even the standard deviations are in the same order of magnitude. It
is fortunate that the averages of the two time series are almost identical, but does this
result, which can be associated with a seasonal mean, vary from year to year? This will be
discussed in the next section.

2.2 Anomalies
The inter-annual variations in long-range runs have been studied extensively using general
circulation models. Unlike forecast models, the circulation models concentrate on
reproducing certain atmospheric climate characteristics. Consequently, they are used to
produce long integrations (several years) for which the initial conditions are long
forgotten. The inter-annual climate variations are simulated by modifying sea-surface
temperatures.

Kumar et al., 1996 (KHLS), shows the ability of a general circulation model to forecast
height anomalies. In long-range forecasts, it is the anomalies rather than the fields
themselves that one wants to predict. In fact, when the numerical models are run for long
periods, they have a tendency to drift away from the initial atmospheric conditions and
tend towards the climate of the model. If we want to ensure that the anomalies predicted
resemble the ones observed, the model's climate must be subtracted from the forecasts
provided. Doing this eliminates the model's drift, which could introduce an artificial
anomaly caused by systematic errors of the models.



The top of Figure 2, taken from KHLS, shows the geopotential height anomalies analysed
at 200 hPa for two five-month periods (November to March): in 1986/1987 (image a) and
1988/1989 (image b). These are, respectively, El Niño and La Niña conditions. Image a
shows negative anomalies over eastern Pacific and northern Mexico, and positive
anomalies over Hudson's Bay (this is a positive PNA pattern). Image b shows the inverse
response (negative PNA pattern). The order of magnitude of anomalies that a numerical
model must be able to predict is typical of the anomalies observed over Hudson's Bay.
They vary from +10 decametres in 86/87 to -12 decametres in 88/89. There is a large
inter-annual variation in heights, caused mainly by a variation in sea-surface temperatures.
Forecasting anomalies at a seasonal scale is thus possible only if the oceans are taken into
consideration.

The other two series of images in Figure 2 show the results of the two atmospheric
models: the one in the middle (images c and d) shows the MRF8 model, which did not
reproduce reality very well, and the one at the bottom (images e and f), the MRF9 model,
for which a modification in the parameterisation was introduced, which shows an amazing
result with very similar predicted and observed anomalies.

The image at the top of Figure 3 shows the response of the MRF9 model for all the
seasons from 1982 to 1993 in terms of correlation anomalies (CA) at 200 hPa. If .5 CA is
considered to be a success criterion, then we can conclude that in climate mode, such a
model is capable of accurately predicting height anomalies in winters in which sea-surface
temperature anomalies are more pronounced. The second series of images in Figure 3
shows the response of height anomalies at 500 hPa in the GCMII model (McFarlane et al.,
1992) that was run under the same conditions as the MRF9, and the response is similar.
The difference between the two can be explained, among other things, by the fact that the
MRF9 model has a higher resolution (T40 versus T32).

2.3 Ensemble mean
We have seen that the numerical models are quite capable of forecasting the mean heights
for a seasonal period. We have also seen that these heights are not static from year to year,
or at least not over our latitudes. We will now discuss the notion of ensemble mean.

All numerical forecasts contain noise, which is due to the initial conditions (imperfect
analysis because of an inadequate observation network) and the errors in the model itself.
A theoretical example of this notion is shown in Figure 4. Part a) of the figure shows a
series of curves, each of which could represent a numerical integration. At first glance, no
conclusion can be drawn from this disparate set of lines. However, by calculating the
mean, we obtain a coherent series (part b) in which the noise has been filtered out.



Long-range forecasts use a similar technique, meaning that series of forecasts are issued
from analyses lagged by 24 hours. By taking the mean of the series obtained in this
manner, we hope to filter out the noise coming from random errors in the model.
Nevertheless, we know very well that the models are subject to systematic errors that can
be eliminated in part by subtracting the integrations from the model's climatology. We will
come back to this point in section 3.1.3.

3. VALIDATING THE OPERATIONAL PROCEDURE
3.1 Description of the operational procedure
Several studies have shown the response of models in climate mode (Kumar et al. 1996,
Zwiers 1996 and Zwiers et al. 1997). In these studies, the initial atmospheric conditions no
longer have an influence because models are run over long periods of time (years).
However, oceanic forcing is prescribed: the model is provided with the sea-surface
temperature anomalies as they have been observed.

In operational mode, the context is completely different: the initial atmospheric conditions
are well known because they come from the operational assimilation cycle. The initial
oceanic conditions are known at the beginning, but a method must be applied to forecast
their evolution until coupled atmosphere-ocean models are perfected.

3.1.1 Surface fields
Section 2.2 of this document showed that surface forcing is extremely important if we
want to be able to accurately predict the height anomalies, and ultimately the surface
temperature anomalies. Of all the types of forcing, the most significant is no doubt the one
involving sea-surface temperatures (SST) (Kumar and Hoerling, 1995). An alternate
solution had to be found in operational mode because the SST values are unknown and
the CMC has no SST anomaly forecast model at this time. Drawing from the results
published by Cane and Zebiak, 1995 (CZ), the persistence of SST anomalies proved to be
an excellent compromise.

Figure 5, taken from the article by CZ, shows the performance of two SST forecast
models for the equatorial Pacific for different periods (1972 to 1992, 1982 to 1992, and
1972 to 1981) and for different scores (correlation and RMS). In all cases, whatever the
period or model, the persistence seems to be the best indication of the evolution of the
SSTs for the first three months. At CMC, because we need only the first three months,
using the persistence of anomalies is a logical choice. Operationally speaking, the SST
anomaly observed over the last 30 days (as shown in Figure 6) is added to the climatology
for the next three months.

For the other surface fields such as ice and soil moisture, the climatological values are
used. Snow is handled differently depending on the model used: for the SEF, the anomaly
for the 30 days is maintained in the first month, with a return to climatology for the



subsequent months; for the GCM, the model is started with the last snow analysis
available, after which the model treats the snow as a prognostic variable.

3.1.2 Monthly forecast
The SEF forecast model (Ritchie 1991) provides the basis for monthly forecasts. It is the
same model as the one used every day for medium-range forecasts (up to 10 days), but
with some dynamic and physical modifications so that it can work in climate mode
(Desautels et al., 1996). Among other things, a module has been added so that the surface
geophysical fields can be read as the integration progresses. Moreover, its spectral
truncation (T63 instead of T199) has been reduced, but more levels have been added in
the stratosphere (L23 instead of L21). This model has also been used in sensitivity studies
of sea-surface temperature forcing (Peng et al., 1995, Dugas et al., 1995).

The monthly forecasts are temperature anomaly outlooks divided into three classes: under,
over and near the normal (see Figure 7). The normal is defined as being within .43 times
the value of the standard deviations observed during the period extending from 1961 to
1990 at each of some 240 stations across the country. This definition makes it possible to
define three equiprobable classes.

The monthly forecasts are issued twice a month, on the first and on the fifteenth. The SEF
model is run up to 35 days every day during the five days preceding the forecast issue
date. The ensemble mean is then calculated for the five integrations for the corresponding
30-day periods. Next, the mean for the 1000-500 hPa thicknesses for the 30 days covering
the forecast period is calculated, followed by a calculation of their anomalies by
subtracting the forecast value from the climatology (30-year analyses). These values are
then interpolated for the 240 stations across Canada. Finally, the temperature analyses are
estimated using the equation below:

Ta = b * DZa  (1) where Ta is the temperature anomaly
and DZa is the thickness anomaly.

3.1.3 Seasonal forecast with zero lead-time
Two models are used to produce the seasonal forecasts: the SEF forecast model as
described in section 3.1.2, and the GCMII general circulation model (McFarlane et al.,
1992). The general circulation model is also a spectral model, with a lower resolution
(T32L10) and different physics. Using two models for the seasonal forecast makes it
possible to generate a wider range of solutions than would be possible with only one
model.

Figure 8 illustrates the strategy used to launch the dynamic seasonal forecasts. For both
models, the 96-day forecasts are started every day during the six days before the outlook
is issued.  These are called zero lead-time forecasts.  If longer lead-times are desired (see
section 3.1.4), other forecast techniques must be used. Contrary to studies such as those
carried out by KHLS, the models in our operational configuration benefit from the initial
atmospheric conditions and make use of the predictable part of the seasonal integration. In



addition, surface (SST) forcing must be forecast, whereas it is prescribed in the KHLS-
type studies.

Unlike monthly forecasts, seasonal forecasts are issued only four times a year. The models
are run every day during the six days before the outlook is issued. In addition, a
precipitation anomaly outlook is also produced for this forecast.

The flowchart describing the blending procedure of the two models for temperatures is
shown in Figure 9. Like the monthly forecasts, it is a perfect prog approach. The "b"
coefficients, described in equation (1), are nonetheless different because of different
averaging periods. The other difference is due to the fact that the climatology used to
calculate the thickness anomaly forecasts come from the models climatologies, which were
obtained from historical forecast runs (see section 3.2). The precipitation anomaly outlook
is done following a direct approach (Figure 10) in which the direct outputs of the models
are used and from which the climatology of the model is subtracted. Once again, forecasts
are produced in three equiprobable classes, using the threshold of .43 times the standard
deviation provided by the model's climatology.

3.1.4 Seasonal forecasts with lead-times of 3, 6, and 9 months
The good correlations between the SST anomalies and the surface temperature anomalies
made it possible to develop purely statistical forecast methods: the "Canonical Correlation
Analysis" (CCA) technique (Barnston, 1993), the "Optimal Climate Normals" (OCN)
technique (Zhang et al., 1996), and the "Space-Time Principal Component" (STPC)
technique (Vautard et al., 1997). The main advantage of these methods is that they can be
calculated at very low computational costs. A 30-year data validation can be done in a few
days.

In December 1996, the CCA technique, based on the study by Shabbar and Barnston,
1996 (SB), was introduced to forecast the temperature and precipitation anomalies over
Canada for lead-times of 3, 6 and 9 months (note that our definition of lead-time
corresponds to lead-times of 3 months in SB). By construction, in order to forecast the
surface temperature anomalies over Canada, the technique examines the SST anomalies
observed over the last 12 months. The skill, which is measured using a cross-validation
method, does not vary much with the lead-time: the quality of the seasonal temperature
anomalies forecast over Canada in one year will be similar to that of the anomalies forecast
in the following season (see Figure 11, taken from SB). This surprising observation needs
to be quantified by the fact that the quality of these forecasts is still low: average
correlation of the order of .3 (a variance explained of the order of 10%).

3.2 Verification of the procedure
The operational procedure for the seasonal forecasts has been validated over 16 years
(1979 to 1994). This verification was made possible thanks to the recent efforts of NCEP,
where a complete reanalysis of the observations was carried out using the same analysis
system for the entire period (Kalnay et al. 1996). These new, high-quality coherent



analyses were made available to us and were used as initial conditions for the models and
for the validation of the results.

A total of 768 seasonal forecasts were thus run: six forecasts per model for each season of
the 16 years of the NCEP reanalyses available. Figure 12 shows the configuration used to
start these runs. The procedure used for the surface fields is described in Figure 13 (for the
SST),  figure14 (for ice) and figure15 (for snow). Once the integrations were done, the
operational procedure was applied to obtain the forecast temperatures at the stations.

The verification was carried out for some 50 stations distributed relatively evenly across
Canada. The three classes for which the percent correct (PC) was calculated were verified
as explained in Figure 16. Considering that the forecasts are done in three equiprobable
classes, a PC of less than 33% means that there was no improvement compared with
climatology. However, with a sampling of 16 realisations, the PC should be greater than
45% in order for the value to be statistically significant. The results for the temperatures
are presented in Figure 17. This figure shows the geographic distribution of the PC for
each of the four seasons. The season with the most accurate forecasts is clearly summer,
for which not only the national PC is the greatest, but for which most of the regions also
show PCs greater than 33%. The worst seasons are the intermediate ones (spring and fall).

The  precipitation  verifications are only  preliminary at  this time and are presented in
Figure 18 (for the summer and fall) and figure 19 (for the winter and spring). The national
mean has not been calculated, but the colour has been heightened for those regions with
statistically significant PCs (greater than 45%). One can see that not many regions meet
these criteria. These disappointing results will be re-evaluated once a more complete
database of observations has been obtained.

This effort has made it possible to validate the operational procedure in order to obtain
seasonal forecasts. The climatology of the models has been recalculated, the method of
preparing the surface field forcing has been redone, and a more suitable combination
(normalized anomalies) has been introduced.

4.  VERIFICATIONS
The forecasts have also been verified in real time to ensure that their quality meets the
quality obtained in section 3.2. The verifications shown in this section are taken from
Verret et al. (1998).

4.1 Monthly forecasts
Since the monthly forecasts are issued twice a month, statistics on their performance can
be accumulated quickly. Figure 20 shows the percent correct score for the temperature
outlooks since June 1996. It also shows the performance of the persistence. On average,
the persistence had a lower score (38% compared with 42%), but this difference is not
statistically significant. Furthermore, during stable periods, such as from November 1996
to January 1997, the persistence can be a good predictor.



4.2 Seasonal forecasts
The seasonal forecast verifications are summarised in Table 1 below. Without comparing
the characteristics of such a small sample in detail, we must mention that the blending
method of the two models has evolved over time. The method described in section 3.1.3
was not introduced until the fall of 1997, which clearly explains the disappointing results
for the summer of 1997.

Seasons PC (%) for temperature anomalies PC (%) for precipitation anomalies
Summer 1996 42.44 n/d

Fall 1996 31.74 n/d
Winter 1997 60.57 38.89
Spring 1997 43.68 28.76

Summer 1997 35.03 26.20
Fall 1997 58.29 24.22

Table 1: Percent correct (PC) for temperature and precipitation anomalies forecast. The verifications were
calculated for all the Canadian stations.

5. CONCLUSIONS AND FUTURE WORK
The first conclusion that can be drawn is that long-range forecasts with modest skill are
actually possible. Nevertheless, the work continues in order to improve this accuracy.

First, the 15 years of historical forecasts (described in section 3.2) will be extended by
another 10 years (1969-1978), using the continued work by NCEP. The 26 years that will
eventually be at our disposal will make it possible to perfect the blending method for the
dynamic models. The anticipated technique, the "Best Linear Unbiased Estimators"
(BLUE), is based on objective analysis techniques (Daley 1991). Using past performances
of models, this method makes it possible to weight the outputs of the two models
automatically in order to optimise the final result. Preliminary results of this technique
have shown a noticeable improvement in temperature forecasts. The BLUE technique will
eventually be expanded to blend dynamical forecasts with statistical methods such as CCA
or STPC.

The precipitation outlooks will be evaluated in more details, using a more complete
database for the observations. The BLUE technique will also be tested on this weather
element.

Monthly forecasts will eventually be generated like the seasonal forecasts: use of the
seasonal forecast outputs to evaluate the monthly climatologies of the model will be
tested. We thus hope to reduce the systematic bias of the model, obtain more realistic
thickness forecast anomalies, and obtain temperature anomalies that provide better
verification. Similarly, we will be able to provide outlooks of precipitation anomalies.



In the longer term, the dynamic forecasts will be extended to provide seasonal forecasts
with lead-times of 3, 6 and 9 months. To do this, an SST forecast method will have to be
introduced, at least over the eastern Pacific.
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Figure 8: Schema explaining the strategy used between dynamic forecasts (with no advance notice) and
statistical forecasts (longer advance notice)
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Figure 20 : Percent correct (PC) for the monthly temperature anomaly forecasts. The score is presented
relative to the expected value of 33.3% for stochastic forecasts. The dynamic forecasts are in black and
persistence in white. The verification was done from June 1996 (J96) to December 1997. The forecasts
issued at mid-month are also shown.
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Figure 15. CCA forecast skill averaged over Canada for 3-month mean temperature except the
SST field is weighted double its natural value.
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Figure 8: Schéma expliquant la stratégie employée entre les prévisions dynamiques
(préavis nul) et statistiques (préavis plus long)
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Figure 20 : Percent correct (PC) for the monthly temperature anomaly forecasts. The score is presented
relative to the expected value of 33.3% for stochastic forecasts. The dynamical forecasts are in black and
persistence in white. The verification was done from June 1996 (J96) to December 1997. The forecasts
issued at mid-month are also shown.
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